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Abstract

In this paper, we modify the discrete-time Solow model by introducing technology
choice and imperfect observation to generate chaotic endogenous business cycles. In
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1 Introduction

The global economy has experienced several boom-and-bust cycles over the past decades,
and the mechanisms of such business cycles have been investigated extensively. Roughly
speaking, there are traditionally two types of explanations for business cycles: exogenous and
endogenous. In this context, recent studies, including Beaudry et al. (2020), provide empirical
evidence that business cycle fluctuations are better explained by considering endogenous cycles
than by external shocks alone.
On the other hand, the Solow model, the most familiar growth model in economics, has

been used as a basic model in many fields of macroeconomics and is still widely applied.
Based on a modified Solow model, for instance, Chen et al. (2014) proposed that dynamic
convergence to a moving steady state exists, testing this with an empirical analysis of the
U.S. economy. More recently, Kufenko et al. (2020) empirically examined predictions of the
history-augmented Solow model concerning cross-country income inequality.
In addition to empirical studies, the Solow model is of great importance to theoretical

analysis. Departing from the textbook Solow model, which is based on convergence to a steady
state, there are modified Solow models that provide frameworks for analysis of endogenous
cycles. Among the existing studies related to endogenous cycles, Böhm and Kaas (2000)
incorporated di↵erent savings behaviors of shareholders and workers into the Solow model
(called the Kaldor–Pasinetti model). They showed that cyclical, as well as chaotic, fluctuations
can emerge when shareholders have a higher savings rate than workers. Quite recently, Agliari
et al. (2020) extended the Kaldor–Pasinetti model to assume that overlapping generations of
workers and capitalists have ownership of capital and revealed a wide range of bifurcations and
complex dynamics. Sushko et al. (2020) explored border collision bifurcation in a modified
Solow model in which capitalists’ saving behavior influences that of workers.
Unlike Böhm and Kaas (2000), Agliari et al. (2020), and Sushko et al. (2020), we do not

assume di↵erential savings. Instead, we assume a switch of production technology. More
specifically, shareholders of the firm can choose the production technology that maximizes their
capital income. It is shown that this technology choice induces certain structural changes that
generate strong threshold nonlinearities, resulting in cyclical dynamics in the Solow model.
Several recent studies have emphasized the mechanisms by which technology choice gener-

ates endogenous cycles. See Umezuki and Yokoo (2019) for two Cobb–Douglas technology
choices and Asano et al. (2022) for Leontief and linear technology choices. Their theoretical
explorations were based on overlapping generations (OLG) models. However, this paper at-
tempts to consider technology choice in a Solow framework. We should not interpret this as
a backward-looking application, because the Solow model is the most basic of many growth
models (including the OLG model and the Ramsey model) and is not subject to the “one
period is too long” criticism that Diamond’s OLG model always receives.
In addition to technology choice, there is another important component of our setting: ob-

servation errors. Given the inherent uncertainty in observations of the economic environment,
it is reasonable to consider observation errors. Especially, when faced with the choice of pro-
duction technology, firms do not have su�cient information to make a decision. Yokoo and
Ishida (2008) emphasized the role of observation errors in generating chaos in a macroeco-
nomic model. Asano and Yokoo (2019) generated ergodic chaos by incorporating information
imperfection into a Matsuyama-type credit cycle model. In both studies, observation errors
add stronger nonlinearity to the threshold nonlinearity in the underlying models, resulting in
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chaotic dynamics.
Our goal in this paper is not so much to show that endogenous periodic or chaotic fluctu-

ations occur in the Solow model from the introduction of technology choice and observation
errors, but rather to describe the dynamics of chaotic fluctuations when they do occur, by de-
riving a stationary distribution of their dynamics using the Markov property. For this reason,
the emphasis herein is not on the unpredictability of chaos, but rather on its predictability.
The rest of the paper is organized as follows. Section 2 introduces the model, in which

binary technology choice and observable uncertainty are incorporated. Section 3 is devoted
to a brief explanation of periodic fluctuations under perfect observation. Section 4 investi-
gates the chaotic dynamics under imperfect observation, in which the chaotic trajectories are
characterized by the Markov property. Section 5 gives some concluding remarks.

2 The model

We recapitulate the discrete version of the Solow’s (1956) model. Time extends from 0 to
infinity. A single commodity is produced from the input of labor Lt and capital Kt at constant
returns to scale. Let yt = Yt/Lt and kt = Kt/Lt be output and capital per worker, respectively,
n � 0 denote the labor force growth rate, � 2 (0, 1] be the depreciation rate of capital, and
s 2 (0, 1) be the saving rate. Then, the model formulation is as follows:

kt+1 =
1

1 + n
[sf(kt) + (1� �)kt].

Now, departing from this standard growth model, we will consider switching the production
technology and having observation errors of the economic state.

2.1 Binary choice of technology

First of all, we consider that two types of production technologies exist, one of which is
Leontief type and the other is linear. Both are extreme cases of the constant elasticity of
substitution (CES) production function. More specifically, the Leontief production function
can be obtained by setting the elasticity of substitution between capital and labor to zero,
whereas linear production technology can be derived by letting the elasticity of substitution
approach infinity.
Following Asano et al. (2022), the two types of production technologies in intensive form

are given by

yt = f(kt) =

8
><

>:
f1(kt) =

(
A1kt if kt < 1,

A1 if kt � 1,

f2(kt) = A2[↵kt + (1� ↵)],

where the subscripts 1 and 2 indicate the Leontief and linear technologies, respectively,
A1, A2 > 0, and ↵ 2 (0, 1). It should be noted that the derivative of the Leontief pro-
duction function does not exist at threshold k = 1. For the sake of simplicity, we will use the
right-hand derivative of f1 at x = 1 as f 0

1(1).
We assume that shareholders of the firm choose the technology that maximizes the capital

income kf 0(k), or equivalently the marginal product of capital f 0(k) given k. That is, the firm
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only cares about achieving its highest return when deciding on the production technology.
Thus, the first-order derivatives of the above production functions are given by

f 0(kt) =

8
><

>:
f 0
1(kt) =

(
A1 if kt < 1,

0 if kt � 1,

f 0
2(kt) = ↵A2.

To prevent a scenario where the Leontief technology is never selected, it is assumed that
A1 > ↵A2. Namely, the Leontief technology is chosen for kt < 1, and the linear technology is
chosen for kt � 1. The choice of production technology is illustrated in Fig. 1.
Given this binary choice of technology, the regime-switching model describing capital accu-

mulation is given by

kt+1 =

(
1

1+n(sA1 + 1� �)kt, if kt < 1,
1

1+n [(sA2↵ + 1� �)kt + sA2(1� ↵)], if kt � 1.
(1)

Clearly, this one-dimensional di↵erence equation with a discontinuity depends on the parame-
ters n, �, s, A1, A2, and ↵. Moreover, there may exist four di↵erent typical dynamic behaviors
relying on parameters, which are illustrated in Fig. 2.
It is obvious from Fig. 2 that case (a) converges to a unique positive steady state; case (b)

exhibits permanent growth; case (c) converges to two locally stable steady states (the lower
one corresponds to the poverty trap); and case (d) exhibits cyclical behavior. The dynamics
occurring in cases (a), (b), and (c) are immediately clear; thus, it is much more interesting to
examine case (d).
To simplify the presentation, we will introduce some new parameters as follows:

a =
sA1 + 1� �

1 + n
, b =

sA2↵ + 1� �

1 + n
, c =

sA2(1� ↵)

1 + n
.

Since we are interested in complex dynamics, we confine our analysis to case (d) where
a > 1 > b+ c, which is equivalent to

A1 >
n+ �

s
> A2.

It is easy to confirm that the set of parameter values satisfying this inequality is non-empty. In
addition, the above condition of technology switch A1 > ↵A2 also holds under a > 1 > b+ c.
Every trajectory generated by (1) will eventually enter the trapping interval T = [b+ c, a].

Therefore, our focus will be on the dynamics of the following map:
F : T ! T ,

kt+1 = F (kt) =

(
akt ⌘ FL (kt) , if kt < 1,

bkt + c ⌘ FR (kt) , if kt � 1.
(2)

Note that b+ c = (sA2 + 1� �)/(1 + n), which is independent of ↵. Additionally, a, b, and c
can take any nonnegative values by appropriate choice of n, �, s, A1, A2, and ↵.
By a straightforward change of variables

xt =
kt � (b+ c)

a� (b+ c)
,
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Figure 1: Binary choice of production technology. Solid lines indicate the chosen technologies.
A1 = 2, A2 = 1.5,↵ = 0.5.
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Figure 2: Di↵erent types of dynamic behavior. n = 0, � = 1, s = 0.2, (a)A1 = 7.5, A2 =
6.5,↵ = 5/13, (b)A1 = 7.5, A2 = 6,↵ = 11/12, (c)A1 = 2.5, A2 = 6,↵ = 0.25, (d)A1 =
15, A2 = 2.5,↵ = 0.6.
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it is possible to transform the map F into the map '̃, which maps the unit interval I = [0, 1]
into itself.
'̃ : I ! I,

xt+1 = '̃(xt) =

(
1 + a(xt � ✓) ⌘ '̃L(xt), if 0  xt < ✓,

b(xt � ✓) ⌘ '̃R(xt), if ✓  xt  1,
(3)

where

✓ =
1� (b+ c)

a� (b+ c)
=

n+ � � sA2

s(A1 � A2)
=

n+ �

s(A1 � A2)
� A2

A1 � A2
.

One can easily confirm that ✓ can take any value between 0 and 1. See the appendix for a
proof. Note also that there is an inverse relationship between ✓ and saving rate s. Fig. 3
depicts map '̃, which has a jump discontinuity at ✓ and is increasing elsewhere.

2.2 Uncertainty of observation

Next, we take one more step forward. Firms cannot observe the true state variables with
precision, due to insu�cient information. Therefore, observation errors are explicitly consid-
ered in the regime-switching model of the previous subsection. Following Yokoo and Ishida
(2008), we assume that state variables are observed with additive noise,

x̂i,t = xt + �"i,t.

Here, the observation x̂i,t made by firm i at time t includes a disturbance term "i,t, which
follows the cumulative distribution function G, has a zero mean, and is independent of t and
i. � > 0 is constant and measures the degree of uncertainty. In particular, � = 0 indicates
that there is no noise involved. Then, the probability of adopting the Leontief technology
(technology 1) is

Prob{x̂i,t < ✓} = Prob

⇢
"i,t <

✓ � xt

�

�
= G

✓
✓ � xt

�

◆
.

The argument of the last term, (✓ � xt)/�, can be written as

⇢(kt) =
1� kt

�(a� b� c)
.

Here, we introduce the uncertainty of observation into the original model (2) and obtain the
following general version of the di↵erence equation:

kt+1 = [aG(⇢(kt)) + b(1�G(⇢(kt)))]kt + (1�G(⇢(kt)))c. (4)

It can be easily confirmed that FL of (2) can be obtained when G(⇢(kt)) = 1 and FR of (2)
can be derived from G(⇢(kt)) = 0. However, it is necessary to further specify G(⇢(kt)) 2 (0, 1)
from the final model.
We first define GM = G(⇢(kt)) for G(⇢(kt)) 2 (0, 1). In general, G(⇢(kt)) can be represented

in the following form:

G(⇢(kt)) =

8
><

>:

0 if ⇢(kt) < �1,

GM if � 1  ⇢(kt) < 1,

1 if ⇢(kt) � 1.

(5)
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Figure 3: Graph of '̃(xt). n = 0, � = 1, s = 0.2, A1 = 10, A2 = 2.5,↵ = 0.4.
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Furthermore, define kL and kR as the solutions of ⇢(kL) = 1 and ⇢(kR) = �1, respectively,
for � > 0 su�ciently small. Then, a simple computation shows that

kL = 1� �(a� b� c), kR = 1 + �(a� b� c). (6)

Note that kL < 1 < kR. It is clear that lim�!0 kL = lim�!0 kR = 1. Since capital per worker
must be positive, we impose the condition that kL > 0. This implies

0 < � <
1

a� b� c
=

1 + n

s(A1 � A2)
. (7)

Subsequently, if GM is appropriately specified, then dynamic equation (4) has a trapping
interval [bkR+ c, akL]. By an analogous change of variables h : [bkR+ c, akL] ! [0, 1] such that

xt = h(kt) =
kt � (bkR + c)

akL � (bkR + c)
,

it is possible to transform equation (4) into the following map:

xt+1 =

8
><

>:

1 + a(xt � ✓L), if 0  xt < ✓L,

'M(xt) if ✓L  xt < ✓R,

b(xt � ✓R), if ✓R  xt  1,

where

✓L =
kL � (bkR + c)

akL � (bkR + c)
, ✓R =

kR � (bkR + c)

akL � (bkR + c)
. (8)

Note also that lim�!0 ✓L = lim�!0 ✓R = ✓, and 'M(xt) depends on GM . In order to make
our model significantly tractable, we set

'M(xt) =
✓R � xt

✓R � ✓L
.

Here, based on this form of 'M(xt), it is possible to deduce the shape of GM . That is, the
explicit form of GM could be obtained such that it satisfies the following equation:

[aGM + b(1�GM))] kt + (1�GM)c = h�1('M(h(kt))).

If we let yt = ⇢(kt) and solve the above equation for GM(yt), then we get

GM(yt) =
(a� b)[1� �(a� b� c)]� c

(a� b)[1� �(a� b� c)yt]� c
· 1 + yt

2
. (9)

See the appendix for the computation of GM . It is also verified that limy!�1 GM = 0 and
limy!1 GM = 1. These values correspond exactly to equation (5), which is illustrated in Fig. 4.
Above, we have specified the functional form of GM and obtained a piecewise linear function

that maps the unit interval onto itself. For the reader’s convenience, we rewrite the model
that we will analyze in this paper as below.
' : I ! I,

xt+1 = '(xt) =

8
><

>:

1 + a(xt � ✓L) ⌘ 'L(xt), if 0  xt < ✓L,

(✓R � xt)/(✓R � ✓L) ⌘ 'M(xt) if ✓L  xt < ✓R,

b(xt � ✓R) ⌘ 'R(xt), if ✓R  xt  1.

(10)
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Figure 4: Graph of cumulative distribution function G(y). n = 0, � = 1, s = 0.2, A1 = 20, A2 =
3,↵ = 5/6, � = 0.1.
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Figure 5: Graph of '(xt). n = 0, � = 1, s = 0.2, A1 = 10, A2 = 2.5,↵ = 0.8, � = 0.05.
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Fig. 5 shows that ' is N -shaped. Moreover, note that ' is influenced by � and will evolve
into '̃ given by (3) when uncertainty disappears.
In the following, we will characterize the dynamics of the model given by (3) and (10).

Depending on whether there is uncertainty or not, periodic cycles and chaotic behaviors are
investigated. As indicated in the title of this paper, we intend to focus more on chaotic
behaviors than periodic cycles.

3 Periodic fluctuations under perfect observation

Here, we briefly examine the dynamics of the model in the absence of noise or uncertainty.
The model is represented by (3), which is a piecewise linear one-dimensional map with a jump
discontinuity at ✓. Under perfect observation, firms can accurately evaluate all relevant factors
to select suitable production technologies. In fact, the dynamics of this specification of the
model have been extensively investigated, for instance, by Keener (1980). In this case, we
simply calculate '̃(0) and '̃(1):

'̃(0) =
(b+ c)(a� 1)

a� (b+ c)
, '̃(1) =

b(a� 1)

a� (b+ c)
.

Since '̃(0) > '̃(1), this corresponds to the nonoverlapping case considered by Keener(1980).
Based on Keener’s (1980) results, a mapping like (3) either exhibits periodic behavior or
converges to a Cantor set, whose measure is zero. Consequently, it is nearly impossible to
observe non-periodic behaviors if there is no uncertainty.

4 Chaotic motions under imperfect observation

In this section, we investigate the dynamic behaviors of the model that incorporates uncer-
tainty, which is represented by equation (10). We first show that this model has the Markov
property under some parameter values, which allows the observation of chaotic dynamics in
the long run. Furthermore, the chaotic trajectories can be characterized by invariant densities.

4.1 Markov property

First of all, the notion of a Markov partition should be discussed. Let I = [0, 1] and
f : I ! I be a mapping of I onto itself. Divide the unit interval into subintervals Ii by a finite
partition P . If fi is a homeomorphism from Ii onto some connected union of intervals of P ,
then f is said to be Markov. The partition is said to be a Markov partition with respect to
f . See, for example, Boyarsky and Gora (1997) for more details.

Proposition 1. (Observable chaos on a period-5 Markov partition) If ✓L = ✓5,L, ✓R = ✓5,R,
a = â = a(✓5,L, ✓5,R) and � = �̂ = �(â), then ' defined by (10) has a period-5 Markov partition

of the unit interval and exhibits observable chaos.

Proof. First, we show that the model (10) can exhibit the following period-5 cycle:

0 = '5(0) < ✓5,L = '2(0) < ✓5,R = '4(0) < � = '(0) < '3(0) = 1, (11)
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which is illustrated in Fig. 6. To calculate this period-5 cycle, we need that ✓5,L and ✓5,R
satisfy

'R('L(0)) = ✓5,L, 'R(1) = ✓5,R.

By solving the above two equations for ✓5,L and ✓5,R, we can obtain

✓5,L =
b

(1 + b)(1 + ab)
, ✓5,R =

b

1 + b
. (12)

Further calculation shows that ✓5,R � ✓5,L = ab2/(1 + b+ ab+ ab2).
Specially, using equations (6), (8), and (12) to solve ✓L(�, a) = ✓5,L and ✓R(�, a) = ✓5,R for

a and �, we derive particular â and �̂. Note that the specific expression for â is omitted here
for brevity, but �̂ can be expressed as follows:

�̂ = �(â) =
âb(1� b� c)

(2 + âb+ âb2)(â� b� c)
.

See the appendix for detailed computation of â and �̂. Moreover, it can be verified that �̂
satisfies the constraint (7) as the following inequality always holds:

âb(1� b� c)

2 + âb+ âb2
< 1.

Next, we show that ' is eventually expanding. Let I1 = (0, ✓5,L), I2 = (✓5,L, ✓5,R), I3 =
(✓5,R, �), and I4 = (�, 1). Then one can easily confirm that

'3(I1) = '(I2) = '4(I3) = '2(I4) = I.

Since every point x 2 [4
i=1Ii will visit I1 at least once every fourth iteration, it will also visit

I2 at least once every fourth iteration. Therefore,

|('4)0(x)| � |'0
L| · |'0

M | · |'0
R|2 =

âb2

|✓5,R � ✓5,L|
= 1 + b+ âb+ âb2 > 1.

Note that |'0
L||'0

M ||'0
R|2 is the smallest possible case. Although |'0

R|3|'0
M | yields a smaller

numerical value, it is logically impossible for such a case to occur.
Since |('4)0(x)| > 1, the map ' given by (10) is eventually expanding, which implies that

the map exhibits observable chaos.

Proposition 2. (Observable chaos on a period-7 Markov partition) If ✓L = ✓7,L, ✓R = ✓7,R,
a = â = a(✓7,L, ✓7,R) and � = �̂ = �(â), then ' defined by (10) has a period-7 Markov partition

of the unit interval and exhibits observable chaos.

Proof. There is a period-7 cycle as follows:

0 = '7(0) < ✓7,L = '3(0) < ✓7,R = '6(0)

< '2(0) < '5(0) < '(0) < '4(0) = 1.

Fig. 7 illustrates this period-7 Markov partition. By solving '2
R('L(0)) = ✓7,L and '2

R(1) =
✓7,R, we can obtain

✓7,L =
b2

(1 + b+ b2)(1 + ab2)
, ✓7,R =

b2

1 + b+ b2
. (13)
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Figure 6: Period-5 Markov property. n = 0, � = 1, s = 0.2, A2 = 2.5,↵ = 0.8, Â1 ⇡ 16.09, �̂ ⇡
0.06.
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Figure 7: Period-7 Markov property. n = 0, � = 1, s = 0.2, A2 = 3.5,↵ = 6/7, Â1 ⇡ 14, �̂ ⇡
0.04.

14



Note that ✓7,R � ✓7,L = ab4/[(1+ b+ b2)(1+ ab2)]. Furthermore, by solving ✓L(�, a) = ✓7,L and
✓R(�, a) = ✓7,R for a and �, we obtain specific â and �̂. It can also be verified that �̂ satisfies
the constraint (7).
Let I1 = (0, ✓7,L), I2 = (✓7,L, ✓7,R), I3 = (✓7,R,'2(0)), I4 = ('2(0),'5(0)), I5 = ('5(0),'(0)),

and I6 = ('(0), 1). Then it is easy to confirm that

'4(I1) = '(I2) = '5(I3) = '2(I4) = '6(I5) = '3(I6) = I.

Since every point x 2 [6
i=1Ii will visit I1 at least once every sixth iteration, it will also visit I2

at least once every sixth iteration. Therefore,

|('6)0(x)| � |'0
L| · |'0

R|4 · |'0
M | = âb4

|✓7,R � ✓7,L|
= (1 + b+ b2)(1 + âb2) > 1.

From Proposition 1 and Proposition 2, the more general case summarized in Proposition 3
can be obtained.

Proposition 3. (Observable chaos on a period-(2n+3) Markov partition) If ✓L = ✓2n+3,L,

✓R = ✓2n+3,R, a = â = a(✓2n+3,L, ✓2n+3,R) and � = �̂ = �(â), then ' defined by (10) has a

period-(2n+3) Markov partition of the unit interval and exhibits observable chaos.

Proof. Solve
'n
R('L(0)) = ✓2n+3,L, 'n

R(1) = ✓2n+3,R

to have a period 2n+ 3. This yields

✓2n+3,L =
bn(1� b)

(1� bn+1)(1 + abn)
, ✓2n+3,R =

bn(1� b)

1� bn+1
. (14)

Further calculation shows that ✓2n+3,R � ✓2n+3,L = [ab2n(1 � b)]/[(1 � bn+1)(1 + abn)]. By an
analogous method, we obtain â and �̂ by solving ✓L(�, a) = ✓2n+3,L and ✓R(�, a) = ✓2n+3,R.
See the appendix for computation of â and �̂.
We show that ' is eventually expanding as follows. Since every point x 2 [2n+2

i=1 Ii will visit
I1 at least once every (2n + 2)th iteration, it will also visit I2 at least once every (2n + 2)th
iteration. Therefore,

|('2n+2)0(x)| � |'0
L| · |'0

R|2n · |'0
M | = (1 + âbn)(1 + b+ · · ·+ bn) > 1.

4.2 Predictable chaos on a Markov partition

We know that ' defined by (10) is a piecewise linear Markov transformation. This allows
us to calculate the long-run distribution of chaotic trajectories, making erratic business cycles
predictable. See, for example, Matsumoto (2005) for the construction of invariant density
functions.
Before proceeding with the analysis, we first introduce a matrix version of the Frobenius–

Perron operator, M' = (mij)1i,jn, the entries of which are given by

mij =
qij
|'0

i|
, 1  i, j  n,

15



where Q' = (qij)1i,jn is the incidence matrix induced by piecewise monotonic transformation
' and partition P of I. More specifically,

qij =

(
1, if Ij ⇢ '(Ii),

0, otherwise.

For more details, see Boyarsky and Gora (1997) or Boyarsky and Scarowsky (1979).

Proposition 4. (Invariant density on a period-5 Markov partition) If ' is Markov on {Ii}4i=1,

inf |('4)0| > 1, and matrix M' = M'5, then ' admits an invariant density function ⇡ = ⇡⇤
5(x),

and the corresponding probability density is p(x) = ⇡⇤
5(x)/

P4
i=1 ⇡i|Ii|.

Proof. From the previous subsection, for a period-5 Markov partition, the following relation-
ship holds:

I4 ⇢ '(I1), [4
i=1Ii ⇢ '(I2), I1 ⇢ '(I3), I2 ⇢ '(I4).

Then, the 4⇥ 4 matrix induced by ' is

M'5 =

2

664

0 0 0 1
a

4 4 4 4
1
b 0 0 0
0 1

b 0 0

3

775 .

where 4 = ab2/[(1 + b)(1 + ab)] and a = â = a(✓5,L, ✓5,R).
Since we know that ' is Markov on {Ii}4i=1 and that inf |('4)0| > 1 from the previous

subsection, by Theorem 9.4.2 of Boyarsky and Gora (1997), ' admits an invariant density
which is the nontrivial solution of ⇡M'5 = ⇡, that is, the left eigenvector for eigenvalue 1.
Therefore, the following defines the invariant density function ⇡⇤

5(x):

⇡⇤
5(x) =

8
>>><

>>>:

âb+ âb2 ⌘ ⇡1, x 2 I1
âb2 + âb+ 1 + b ⌘ ⇡2, x 2 I2
âb2 ⌘ ⇡3, x 2 I3
âb2 + b+ b2 ⌘ ⇡4, x 2 I4

.

The corresponding probability density, the normalized invariant density, is illustrated in
Fig. 8. The area for interval Ii represents the frequency that a typical chaotic trajectory visits
Ii.
It is also worth noting that the mean µ = µ(â, b) and standard deviation ! = !(â, b) of

chaotic trajectories can be obtained by straightforward computations (see the appendix). For
instance, when b = 0.4, c = 0.1, we find â ⇡ 3.22, �̂ = 0.06, and subsequently calculate
µ ⇡ 0.4022 and ! ⇡ 0.3035. In particular, theoretical values and estimated values converge
asymptotically.

Proposition 5. (Invariant density on a period-7 Markov partition) If ' is Markov on {Ii}6i=1,

inf |('6)0| > 1, and matrix M' = M'7, then ' admits an invariant density function ⇡ = ⇡⇤
7(x)

and the corresponding probability density is p(x) = ⇡⇤
7(x)/

P6
i=1 ⇡i|Ii|.
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Figure 8: Invariant density for the period-5 Markov map. n = 0, � = 1, s = 0.2, A2 = 2.5,↵ =
0.8, Â1 ⇡ 16.09, �̂ ⇡ 0.06. Density p(x) = ⇡⇤

5(x)/
P4

i=1 ⇡i|Ii|. Simulated histogram of 106

iterations.
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Proof. Using an analogous method to that for the invariant density on a period-5 Markov
partition case, we first obtain the following relationships:

I6 ⇢ '(I1), [6
i=1Ii ⇢ '(I2), I1 ⇢ '(I3), I2 ⇢ '(I4), I3 ⇢ '(I5), I4 ⇢ '(I6).

Then, a 6⇥ 6 matrix is obtained as follows:

M'7 =

2

6666664

0 0 0 0 0 1
a

4 4 4 4 4 4
1
b 0 0 0 0 0
0 1

b 0 0 0 0
0 0 1

b 0 0 0
0 0 0 1

b 0 0

3

7777775
,

where 4 = ✓7,R � ✓7,L = ab4/[(1 + b+ b2)(1 + ab2)] and a = â = a(✓7,L, ✓7,R).
The corresponding invariant density ⇡⇤

7(x) can be calculated as

⇡⇤
7(x) =

8
>>>>>>>><

>>>>>>>>:

âb4 + âb3 + âb2, x 2 I1
âb4 + âb3 + âb2 + b2 + b+ 1, x 2 I2
âb4 + âb3, x 2 I3
âb4 + âb3 + b3 + b2 + b, x 2 I4
âb4, x 2 I5
âb4 + b4 + b3 + b2, x 2 I6

.

The corresponding probability density is depicted in Fig. 9.
To find the general form of invariant density, we also calculate ⇡⇤

9(x) for n = 3. See
the appendix for the computation of ⇡⇤

9(x), where the corresponding probability density is
p(x) = ⇡⇤

9(x)/
P8

i=1 ⇡i|Ii|.

Proposition 6. (Invariant density on a period-(2n+3) Markov partition) If ' is Markov on

{Ii}2n+2
i=1 , inf |('2n+2)0| > 1, and matrix M' = M'2n+2, then ' admits an invariant density func-

tion ⇡ = ⇡⇤
2n+3(x) and its corresponding probability density is p(x) = ⇡⇤

2n+3(x)/
P2n+2

i=1 ⇡i|Ii|.

Proof. By the same argument, we can obtain the following (2n+ 2)⇥ (2n+ 2) matrix:

M'2n+3 =

2

66666664

0 0 · · · 0 0 1
a

4 4 · · · 4 4 4
1
b 0 · · · 0 0 0
0 1

b · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1

b 0 0

3

77777775

.

Here, 4 = ✓2n+3,R�✓2n+3,L = [ab2n(1�b)]/[(1�bn+1)(1+abn)] and a = â = a(✓2n+3,L, ✓2n+3,R).
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Figure 9: Invariant density for the period-7 Markov map. n = 0, � = 1, s = 0.2, A2 =
3.5,↵ = 6/7, Â1 ⇡ 14, �̂ ⇡ 0.04. Density p(x) = ⇡⇤

7(x)/
P6

i=1 ⇡i|Ii|. Simulated histogram of
106 iterations.
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Then, solving ⇡M'2n+2 = ⇡, we obtain

⇡⇤
2n+3(x) =

2

666664

⇡1

⇡2
...

⇡2n+1

⇡2n+2

3

777775
.

Here, ⇡2 = (1 + âbn)(1 + b + · · · + bn), which is the maximum, and ⇡2n+1 = âb2n, which is
the minimum. If the Markov partition can be split into odd and even terms, it is possible to
derive the remaining items from ⇡2 and ⇡2n+1.

5 Conclusion

We have developed a regime-switching model that can exhibit periodic fluctuations and
chaotic dynamics. The two distinct regimes and endogenous cycles are from the binary choice
of production technology. In addition, chaotic motions are induced by observation errors.
More importantly, the chaos was characterized by the Markov property, which allows the
calculation of invariant densities. It is, thus, possible to predict the highly erratic trajectories
in the long run.
We give here a few notes on technology choice and observation errors. Technology choice

here can be interpreted more broadly. For example, if the output is taken abstractly, then
technology choice may be described as the choice of industry in which investors (shareholders)
invest. Or, to take a slight leap forward, it may be regarded as the choice of the political
party supported by investors (such as between the two major parties, the Republican and
Democratic parties, in the United States of America). This is because one can imagine that
the party in power will have an impact on the macro structure of production.
As for the observation errors introduced here, there may be other interpretations. For

instance, we could assume that there is some heterogeneity among firms so that their optimal
thresholds vary even if no observation errors are present.
Finally, the piecewise linear model presented here is based on very specific parameters and

a very specific distribution of observation errors. In this very special situation, the chaotic
dynamics of the model, usually considered unpredictable, become predictable because they
are fully described in some probabilistic sense. Therefore, it remains to be seen whether
the model with the Markov property has some robustness. If so, the Solow model with the
Markov property could be regarded as a good benchmark. This topic is, however, left for
future research.

Appendix A. Proof of 0 < ✓ < 1

From the right-hand inequality of A1 > (n+ �)/s > A2, we have

n+ �

sA1
>

A2

A1
.

This implies
n+ � � sA2

sA1
> 0.
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Since

✓ =
n+ � � sA2

s(A1 � A2)
>

n+ � � sA2

sA1
,

it is clear that ✓ > 0.
On the other hand, since sA1 > n + �, the operation of finding a common denominator

yields
n+ � � sA2

s(A1 � A2)
<

n+ �

sA1
.

From the left-hand inequality of A1 > (n+ �)/s > A2, we have

n+ �

sA1
< 1.

Hence, we can verify that ✓ < 1.

Appendix B. Computation of GM

The explicit forms of h(kt) and 'M(xt) give us

xt+1 = 'M(h(kt)) =
kR � kt
kR � kL

.

Consequently,

kt+1 = h�1(xt+1) = h�1('M(h(kt))) = [akL � (bkR + c)] · kR � kt
kR � kL

+ (bkR + c).

On the other hand, using equation (4), GM can be obtained as follows:

G(⇢(kt)) =
kL(a� b)� c

kt(a� b)� c
· kR � kt
kR � kL

.

Since kt = ⇢�1(yt), equation (9) can be obtained by substitution.

Appendix C. Computation of (�̂, â)

From equations (6) and (8), we can obtain

✓L(�, a) =
1� b� c� �(a� b� c)(1 + b)

a� b� c� �(a� b� c)(a+ b)
and

✓R(�, a) =
1� b� c+ �(a� b� c)(1� b)

a� b� c� �(a� b� c)(a+ b)
.

To derive �̂ and â, we solve ✓L(�, a) = ✓5,L and ✓R(�, a) = ✓5,R using equation (12). Given
b and c, â can be attained by solving

(1� b� c)(1 + ab)� (ab� 1 + c)(1 + b)

(a� b� c)(1 + ab)� (ab� 1 + c)(a+ b)
=

b

(1 + b)(1 + ab)
.
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for a. For brevity, the explicit expression of â is not presented here, but it can be solved since
this is a quadratic equation in terms of a. Based on this â, we solve

1� b� c� �(â� b� c)(1 + b)

✓5,L
=

1� b� c+ �(â� b� c)(1� b)

✓5,R
.

for �̂, from the equation (12), �̂ = �(â) can be obtained, as indicated in the main text.
For the general case, we solve ✓L(�, a) = ✓2n+3,L and ✓R(�, a) = ✓2n+3,R for â and �̂ to find

that â can be obtained from

(1� b� c)D1 � (1 + b)D2

(a� b� c)D1 � (a+ b)D2
=

bn(1� b)

(1� bb+1)(1 + abn)
,

where D1 = (1� b)(1 + abn) and D2 = bn(1� b)(a� b� c)� (1� bn+1)(1� b� c).
Given this â, a particular �̂ can be obtained as follows:

�̂ = �(â) =
âbn(1� b� c)

(â� b� c)(2 + âbn + âbn+1)
.

Appendix D. Computation of µ and !

From the probability density, the mean µ is calculated as

µ =

Z

I

x · p(x) dx

=

Z

I

x · ⇡⇤
5(x)P4

i=1 ⇡i|Ii|
dx

=
⇡1 · ✓25,L + ⇡2 · (✓25,R � ✓25,L) + ⇡3 · (�2 � ✓25,R) + ⇡4 · (1� �2)

2
P4

i=1 ⇡i|Ii|

=
3 + 9b+ 5b2 + 3âb+ 10âb2 + 5âb3 + â2b2 + 3â2b3 + â2b4

2(4 + 3b+ 2âb+ âb2)(1 + b)(1 + âb)

= µ(â, b),

where â = a(✓5,L, ✓5,R). To obtain the standard derivation !, it is necessary to calculate the
variance !2.

!2 =

Z

I

(x� µ)2 · p(x) dx

=

Z

I

x2 · p(x) dx� µ2

=
⇡1 · ✓35,L + ⇡2 · (✓35,R � ✓35,L) + ⇡3 · (�3 � ✓35,R) + ⇡4 · (1� �3)

3
P4

i=1 ⇡i|Ii|
� µ2.

Therefore, the standard derivation ! = !(â, b) is the square root of the above.
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Appendix E. Computation of ⇡⇤
9(x)

From M'5 and M'7 , we can obtain M'9 , which is an 8⇥ 8 matrix.

M'9 =

2

66666666664

0 0 0 0 0 0 0 1
a

4 4 4 4 4 4 4 4
1
b 0 0 0 0 0 0 0
0 1

b 0 0 0 0 0 0
0 0 1

b 0 0 0 0 0
0 0 0 1

b 0 0 0 0
0 0 0 0 1

b 0 0 0
0 0 0 0 0 1

b 0 0

3

77777777775

,

where 4 = ✓9,R � ✓9,L = ab6/[(1 + b)(1 + b2)(1 + ab3)]. Using M'9 , we can calculate

⇡⇤
9(x) =

2

66666666664

ab6 + ab5 + ab4 + ab3

ab6 + ab5 + ab4 + ab3 + b3 + b2 + b+ 1
ab6 + ab5 + ab4

ab6 + ab5 + ab4 + b4 + b3 + b2 + b
ab6 + ab5

ab6 + ab5 + b5 + b4 + b3 + b2

ab6

ab6 + b6 + b5 + b4 + b3

3

77777777775

.

Here we note that a = â = a(✓9,L, ✓9,R), which is the solution to ✓L(�, a) = ✓9,L and ✓R(�, a) =
✓9,R.
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Böhm, V., Kaas, L. (2000). Di↵erential savings, factor shares, and endogenous growth cycles.
Journal of Economic Dynamics & Control, 24: 965–980.

Boyarsky, A., Gora, P. (1997). Laws of Chaos: Invariant Measures and Dynamical Systems in

One Dimension. Springer.

Boyarsky, A., Scarowsky, M. (1979). On a class of transformations which have unique abso-
lutely continuous invariant measures. Transactions of the American Mathematical Society,
255: 243-262.

23



Chen, K., Gong, X., Marcus, R.D. (2014). The new evidence to tendency of convergence in
Solow model. Economic Modelling, 41: 263–266.

Keener, J.P. (1980). Chaotic behavior in piecewise continuous di↵erence equations. Transac-
tions of the American Mathematical Society, 261: 589-604.

Kufenko, V., Prettner, K., Geloso, V. (2020). Divergence, convergence, and the history-
augmented Solow model. Structural Change and Economic Dynamics, 53: 62-76.

Matsumoto, A. (2005). Density function of piecewise linear transformation. Journal of Eco-
nomic Behavior & Organization, 56: 631-653.

Solow, R.M. (1956). A contribution to the theory of economic growth. The Quarterly Journal

of Economics, 70: 65-94.

Sushko, I., Commendatore, P., Kubin, I. (2020). Codimension-two border collision bifurca-
tion in a two-class growth model with optimal saving and switch in behavior. Nonlinear
Dynamics, 102: 1071-1095.

Umezuki, Y., Yokoo, M. (2019). A simple model of growth cycles with technology choice.
Journal of Economic Dynamics & Control , 100: 164–175.

Yokoo, M., Ishida, J. (2008). Misperception-driven chaos: Theory and policy implications.
Journal of Economic Dynamics & Control , 32: 1732–1753.

24




