
Chaotic Dynamics of a Piecewise Smooth Overlapping
Generations Model with

a Multitude of Technologies

Yosuke Umezuki∗ and Masanori Yokoo†

This Version: January 31, 2019

Abstract

In this study, we develop a simple overlapping generations model that can ex-
hibit chaotic fluctuation. The key assumption is that a firm’s owner can choose from
a continuum of technologies of production. As a result, the model reduces to a
piecewise smooth map, which is tractable enough so its dynamics can be analyti-
cally investigated in depth. To study chaotic behaviors in the model, we adopt two
approaches:border collision bifurcationandMarkov property. The border collision
bifurcation theory characterizes the routes from a globally attracting steady state to
other non-stationary behaviors. The Markov property reveals the chaotic dynamics
of the model for a much larger set of parameter values.

JELClassification Numbers: C62; E32; O14; O41
Key Words: Technology Choice; Piecewise Smoothness; Endogenous Fluctuations;
Overlapping Generations Model; Chaotic dynamics

∗Corresponding author: Graduate School of Humanities and Social Sciences, Okayama University,
Tsushimanaka 3-1-1, Kita-ku, Okayama 700-8530, Japan. e-mail: ec19025@s.okayama-u.ac.jp

†Graduate School of Humanities and Social Sciences and Faculty of Economics, Okayama University,
Tsushimanaka 3-1-1, Kita-ku, Okayama 700-8530, Japan. e-mail: yokoo@e.okayama-u.ac.jp



1

1 Introduction

There is no doubt that the overlapping generations (OLG, hereafter) model is one of the

most popular dynamic economic models in the literature. Especially, the OLG setting

plays an important role in constructing an endogenous growth (or business) cycle model,

which exhibits, without external shocks, a perpetual periodic or chaotic (i.e., random-

looking but deterministic) fluctuation. In early literature, a few prominent examples of

such perpetual fluctuation in an OLG model can be found in the studies by Benhabib and

Day (1982) and Grandmont (1985).

Matsuyama (2007) presents an OLG-type model of credit cycles induced by finan-

cial imperfections; he shows that the model has the capability to exhibit several dynamic

growth patterns, including perpetual fluctuations. Asano et al. (2012) focus on a special

case of the model by Matsuyama (2007) and show that, in such a case, the model can

exhibit periodic and non-periodic fluctuations. Iwaisako (2002) investigates a situation in

which investors can choose from among two production technologies—constant returns

to scale and increasing returns to scale—and shows several dynamic patterns such as per-

petual fluctuation and permanent economic growth. It should be noted that, in the above

studies, each model can eventually reduce to a one-dimensional map with discontinuity.

In these models, the set of parameter values for which a complex fluctuation can appear is

extremely “thin” even if there exists a complex fluctuation theoretically. In other words,

the chaotic motions cannot be observed virtually.

Along this line of discrete choice in an OLG model, Umezuki and Yokoo (2019) con-

struct an explicit OLG model in which the firm faces a binary choice problem related to

the choice of technology (represented by the Cobb-Douglas production function of con-

stant returns to scale). Similar to the above studies, our model can eventually reduce to a

piecewise linear map with discontinuity. Such piecewise-linearization, similar to Asano

et al. (2012), helps us to directly apply to our model some useful results borrowed from

prior studies on mathematical neuron models. The employment of this method completely

characterizes the existence and occurrence of periodic fluctuations in the model. However,

the model also cannot virtually reproduce complex fluctuations, because it has a small set

of parameter values for which there exists non-periodic fluctuation in the model.

Of course, we can frequently observenon-periodic, complex fluctuation of economic

variables in the real world. Therefore, it is natural that, along this line, we develop a

model that can virtually reproduce the chaotic fluctuations in the long run. Especially,

this study aims to extend the model in Umezuki and Yokoo (2019). To do this, our idea is

to smooth the map with discontinuity through some modifications. If this new piecewise
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smooth map has sufficient nonlinearity, we can easily conjecture that the model has the

capability to generate observable complex fluctuations.

It must be noted that the approach to smooth the discontinuous model has been dis-

cussed in context. Yokoo and Ishida (2008) introduce imperfect observability, which

they call misperception. It is represented by a parameterized random variable in the state

variable to smooth Ishida and Yokoo’s (2004) piecewise linear model with discontinu-

ity, which is a macroeconomic, but not an OLG, model with discrete choice. Asano and

Yokoo (2019) also adopt this idea into the model in Asano et al. (2012) and investigate

the chaotic dynamics. However, in general, the abovementioned smooth model with im-

perfect observability is too general to investigate its dynamics in detail. Indeed, these

studies make a somewhat strict assumption about misperception, in which the model can

reduce to a piecewiselinear map. Although such linearization gives us depth and clear

results about the complex dynamics of the model, there is a tradeoff between tractability

and generality in this method.

On the other hand, in this study, we use a more primitive and intuitive way to smooth

Umezuki and Yokoo’s (2019) piecewise linear map with discontinuity. There is only one

modification: we assume that the firm faces acontinuouschoice problem of technology

rather than a binary choice problem. As a result, we can transform, without additional as-

sumption, a piecewise linear model with discontinuity into a continuous piecewise smooth

model that can virtually reproduce the chaotic motion and is tractable enough to inves-

tigate such a fluctuation. In this sense, our model can cope with both generality and

tractability. Matsuyama (2013) and Matsuyama et al. (2016) adopt the same method,

which assumes a continuous choice instead of discrete choice, to smooth the discontin-

uous model in Matsuyama (2007). However, our model is simpler than Matsuyama’s in

terms of the story and motivation behind the modeling.

To study the complex dynamics in continuous piecewise smooth maps, we adopt two

approaches:border collision bifurcationandMarkov property. That is, we obtain two

different characterizations of chaotic dynamics in the model. The first approach includes

a bifurcation that occurs in piecewise smooth, piecewise linear, and piecewise non-linear

maps. This theory reveals the bifurcation from a globally attracting steady state to other

non-stationary behaviors using only local information in the system. Especially, we can

completely characterize the bifurcation from an attracting steady state to another non-

stationary attractor, such as periodic cycles orchaotic bundles. Gardini et al. (2008)

and Matsuyama et al. (2016) use the border collision bifurcation theory to investigate

the chaotic dynamics in their models. Second, we find that our model can have a special

property—a Markov property for some sets of parameter values. If the model has such
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a property, we can easily establish and characterize its complex dynamics. Yokoo and

Ishida (2008) and Asano and Yokoo (2019) find the Markov property in their piecewise

linear models to analyze the chaotic dynamics. Therefore, from a technical viewpoint,

our model has an advantage against the preceding models because we can characterize

the chaotic fluctuations in the model using two different approaches.

The remainder of this paper is organized as follows. Section 2 re-examines the OLG

model with a binary choice of technologies. Section 3 derives the piecewise smooth

model by introducing a new assumption, a multitude of choices in the technologies, into

the OLG model with a binary choice setting. Section 4 describes the border collision

bifurcation theory characterized by routes from the globally attracting steady state to other

non-stationary cycles, including chaotic fluctuation. Section 5 reveals that the capability

of the model has a Markov property for some set of parameter values. Section 6 concludes

the study. Some mathematical proofs are delegated to the appendices.

2 The model under binary technology choice

In this section, for the reader’s convenience, we re-examine the base model of this study.

(See Umezuki and Yokoo (2019) for more details.) We consider a Diamond-type one-

sector OLG model that is modified further. Time is discrete, that is,t = 0,1,2, · · · , and

the agents live for two periods. A young household supplies one unit of labor inelastically.

We keep the utility function,u, of the household as simple as possible; this allows us to

assume that it is in the form of a log-linearized Cobb-Douglas production function, that

is,

u(cy
t , c

o
t+1) = (1− s) logcy

t + slogco
t+1, s ∈ (0,1), (1)

wherecy
t denotes the amount of consumption of the young generation born at timet, and

co
t+1 denotes the amount of consumption of the old generation living at timet + 1. The

utility given by Eq.(1) is maximized under the following constraints:

cy
t + st = wt and co

t+1 = r t+1st, (2)

wherest, wt, andr t+1 are the amounts of saving, real wage rate, and real gross rate of

return, respectively. The maximization yields

st = swt. (3)

The final good,Yt, which is perishable, is produced by the firm. Unlike the common

OLG models, we assume that there are two types of production technologies. We also
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assume that, at the beginning of every period, the firm faces a discrete choice problem

related to the choice of technology. For simplicity, all the technologies are specified as

the Cobb-Douglas of constant returns to scale:

Yt = Fa(Kt, Lt) = AKa
t L1−a

t and

Yt = Fb(Kt, Lt) = BKb
t L1−b

t ,

whereA, B > 0 is the total factor productivity, and 0< a < b < 1 is the capital share of

the production of technology. In the per-capita form, we can write

yt = fi(kt) = Fi(kt,1), (4)

whereyt = Yt/Lt, kt = Kt/Lt, andi ∈ {a,b}. We assume that the firm’s owner, who belongs

to the old generation, chooses technology that earns the highest return. For simplicity, we

assume that when the highest rates of return are tied among two technologies, technology

1 characterized by (a,A) is chosen. Subsequently, the usual first-order conditions with the

technology choice are represented by

r t = f ′Jt
(kt), (5)

wt = fJt(kt) − kt f
′
Jt
(kt), and (6)

Jt = arg max
j∈{a,b}

f ′j (kt). (7)

The market clearing condition,

kt+1 = st, (8)

with Eqs.(3), (6) and (7) generate the dynamic model in the following form:

kt+1 =

{
sA(1− a)ka

t 0 ≤ kt ≤ k̂,
sB(1− b)kb

t k̂ < kt,
(9)

where

k̂ =
[aA
bB

]1/(b−a)

. (10)

It is clear that if Eq.(9) has a positive fixed point, it would be globally attracting. As

we are interested in non-stationary behaviors, we examine the case where Eq.(9) has no

positive fixed point. The following lemma shows that there is a parameter set for which

Eq.(9) has no positive fixed point.

Lemma 1. Let a,b ∈ (0,1) with a < b, B > 0, and s∈ (0,1) be given. Subsequently,

there exist A> 0 andA > 0 with A < A such that map (9) has no positive fixed point for

A ∈ (A,A).
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Proof. See Umezuki and Yokoo (2019). �

Finally, by defining a new variablext as

xt =
log

[
kt/s(1− b)Bk̂b

]
logb(1− a)/a(1− b)

, (11)

Eq.(9) can reduce to the following piecewise linear map on the unit interval:

xt+1 = τ(xt) =

{
1+ a(xt − c) if 0 ≤ xt ≤ c,
b(xt − c) if c < xt ≤ 1,

(12)

where

c = c(s,A) =
1−b
b−a log [aA/bB] − log s(1− b)B

logb(1− a)/a(1− b)
. (13)

It is interesting to note that Eq.(12) can be identified with a simplified version of Caian-

iello’s equation in the neural networks, whose original model is proposed by Caianiello

to describe the behavior of a “model of brain” or “thinking machine”; this model is stud-

ied by Nagumo and Sato (1972) in detail. Additionally, Hata (2014) comprehensively

analyzes this type of equation, and we utilize this author’s analysis results for the mathe-

matical neuron model to study economic growth.

When investigating Eq.(12), the position of thresholdc(s,A) on the unit interval plays

an important role. The position of the threshold characterizes the dynamical property

of the model. Generally, for a given value ofc, Eq.(12) has either a globally attracting

periodic cycle or a non-periodic attractor.

The following lemma shows that thresholdc(s,A) can take any value within the range

of (0,1), independently of parametersa andb.

Lemma 2. For any a,b ∈ (0, 1) with a< b and any c∗ ∈ (0,1), there exist s∗ ∈ (0, 1) and

A∗ ∈ (A,A) such that c(s∗,A∗) = c∗.

Proof. See Umezuki and Yokoo (2019). �

Now, we restate the existence of a periodic orbit in the model.

Proposition 1. For each irreducible fraction p/q ∈ (0,1), there exists a closed interval

∆(p/q) ⊂ (0,1) such that if c(s,A) ∈ ∆(p/q), for any x∈ (0,1), the orbit of x converges

to some periodic orbit of period q.

Proof. See Hata (2014), Theorem 4.2 on p.36 and Theorem 10.1 on pp.117–118.�
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Thus, we can almost completely grasp the periodic dynamical features of the model by

verifying to which closed interval thresholdc belongs. Moreover, owing to the piecewise

linearity of the model, we can exactly calculate the left and right endpoints of the closed

interval∆(p/q) for any p/q. See Umezuki and Yokoo (2019) for more details on this

point.

Next, we can consider the following set:

Γ = [0,1]\
∪

p/q∈[0,1]∩Q
∆(p/q).

SetΓ is the remainder obtained from the unit interval [0,1] by Deleting the infinite closed

intervals. Ifc ∈ Γ, Eq.(12) has a non-periodic attractor.

Proposition 2. If c(s,A) ∈ Γ, for any x∈ (0,1), theω-limit set of x; that is,
∩∞

n=0

∪∞
k=n clτk (x),

is some compact and totally disconnected uncountable set on the unit interval.

Proof. See Hata (2014), Theorem 7.4 on p.80 and Theorem 8.5 on p.90. �

In the proposition, clA represents closure of setA. We can conclude that, forc(s,A) ∈
Γ, Eq.(12) has aglobal non-periodic attractor; it implies that once such a threshold value

is chosen, the economy would fluctuate in a non-periodic manner in the long run forany

initial condition. However, there is the fact that setΓ is extremely “thin.” The Hausdorff

dimension of setΓ is zero. This implies that this base model cannot virtually reproduce

non-periodic fluctuations in the long run.

3 The model under continuum technology choice

In what follows, we modify the base model examined in the previous section to construct a

simple, tractable, OLG model with technology choice to virtually reproduce non-periodic

fluctuations in the long run.

To do this, we make only one modification. We assume that the firm faces a continuum

of technologies. That is, there is a continuum of production functions,

Yt = Fα(Kt, Lt) = AKα
t L1−α

t , α ∈ [a,b],

and the firm can choose this before the production of a good. Here, we also assume that

the parameter of total factor productivity, given asA andB in the binary choice setting, is

constant through all technologies.

Therefore, we face the dynamic model in the following form:{
kt+1 = sA(1− α)kαt ,
α = arg maxα∗∈[a,b]

{
Aα∗kα

∗−1
t

}
, and k0 > 0.

(14)
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It is easily shown thatα is given by

α =


a, kt ≤ e−

1
a ,

− 1
logkt

, if e−
1
a < kt ≤ e−

1
b ,

b, e−
1
b < kt.

(15)

Subsequently, we have the following piecewise-smooth dynamic model:

kt+1 =


β(1− a)ka

t , kt ≤ e−
1
a ,

β
(
1+ 1

logkt

)
k
− 1

logkt
t , if e−

1
a < kt ≤ e−

1
b ,

β(1− b)kb
t , e−

1
b < kt,

(16)

whereβ = sA.

By defining a new variableyt = logkt, Eq.(16) turns out to be

yt+1 = h(yt) =


h1(yt) = ayt + logβ(1− a), yt ≤ −1

a,
h2(yt) = log(1+ 1

yt
) + logβ − 1, if −1

a < yt ≤ −1
b,

h3(yt) = byt + logβ(1− b), −1
b < yt.

(17)

Fig.1 depicts the graph of return map ofyt, which has a fixed point in
(
−1

a,−
1
b

)
.

<<insert Fig.1 around here>>

The graphical argument shows that if Eq.(17) has a fixed point on
(
−∞,−1

a

]
or

[
−1

b,∞
)
,

it would be globally attracting. Elementary algebra shows the following proposition that

detects the set of parameterβ = sA, for which the model exhibits the globally attracting

steady state.

Proposition 3. Let

β∗(u, v) =
1

1− v
exp

(
−1− u

u

)
, 0 < u, v < 1.

For any a< b, if β < β∗(a,a) or β∗(b,b) < β, map (17) has a fixed point on
(
−∞,−1

a

]
or[

−1
b,∞

)
, respectively.

Here, it should be noted that, for anya < b, we haveβ∗(a,a) < β∗(b,b).

As we are interested in non-stationary behaviors, we examine the case wherein Eq.(17)

has a positive steady state on the interval
(
−1

a,−
1
b

)
. That is, we mainly focus on the

following case:

β∗(a,a) < β < β∗(b,b).
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Let us further classify the model. It is evident that every trajectory generated by (17)

eventually enters the trapping intervalT =
[
h2(−1

b),h1(−1
a)

]
and never leaves it. Thus, to

study the long-run behavior of the model in this situation, it is sufficient to focus on the

dynamics of the trapping interval,I . It must be noted that, depending on parameter values

a andb, we face the following two scenarios.

1. If
a− b
ab

> log
(1− b)
(1− a)

, thenβ∗(b,a) < β∗(a.b). We have the following cases:

• If β∗(a,a) < β < β∗(b,a), thenT contains the right threshold only.

• If β∗(b,a) < β < β∗(a,b), thenT contains all the thresholds.

• If β∗(a,b) < β < β∗(b,b), thenT contains the left threshold only.

2. If
a− b
ab

< log
(1− b)
(1− a)

, thenβ∗(a,b) < β∗(b.a). We have the following cases:

• If β∗(a,a) < β < β∗(a,b), thenT contains the right threshold only.

• If β∗(a,b) < β < β∗(b,a), thenT contains no thresholds.

• If β∗(b,a) < β < β∗(b,b), thenT contains the left threshold only.

If T contains only the right (left) threshold, the model can be regarded as a unimodal

map. On the other hand, ifT contains both thresholds, the model reduces to a bimodal

map on the unit interval. Finally, ifT contains no thresholds, the model can be regarded

as a monotonically decreasing map, which can have a periodic cycle at most period two.

It is reasonable that we omit such an insignificant case.

As we will see later, both unimodal and bimodal maps in our model are capable of

generating chaotic behaviors. We investigate the chaotic dynamics of the unimodal and

bimodal cases in sections 4 and section 5, respectively.

4 Chaotic dynamics: Border collision bifurcation

In this study, we adopt two approaches to investigate the chaotic behaviors in the model.

In this section, we deal withborder collision bifurcationto investigate the dynamical

property of the unimodal case. In this case, we can locally, but almost completely, char-

acterize the bifurcation from a globally attracting steady state to non-stationary behaviors;

that is, bifurcation from a globally attracting steady state to a periodic cycle or achaotic

bundle. Roughly speaking, a one-dimensional piecewise map may undergo border colli-

sion bifurcation when the 45 degree line touches the graph of the map at its non-smooth

boundaries. Therefore, in our model, border collision bifurcation occurs whenβ exceeds
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β∗(a,a) as well asβ approachesβ∗(b,b). To avoid increasing the length of the paper, we

focus on the former case, in which the model can be represented by a single peaked uni-

modal map. Of course, the same analytical method is adopted for the latter case, in which

the model can be represented by aV-shaped unimodal map. In section 4.1, we briefly dis-

cuss some mathematical results for border collision bifurcation. In section 4.2, we adopt

the results to our OLG model with technology choice.

4.1 Some mathematical results from border collision bifurcation

All results in this section follow from Nusse and Yorke (1995).

Before we examine the piecewise smooth map (17), we consider the following piece-

wise linear map:

Fν1,ν2 =

{
ν1x+ 1 x ≤ 0,
ν2x+ 1 0< x,

(18)

with 0 < ν1 < 1 andν2 < −1. For convenience, let

D = {(ν1, ν2) : 0 < ν1 < 1 and ν2 < −1}.

Note that the above map is typologically conjugated with the following map:

Fµ =

{
ν1x+ µ x ≤ 0
ν2x+ µ 0 < x,

(19)

for all µ > 0, which undergoes border collision bifurcation whenµ = 0.

First, we state the existence of the periodic orbit in map (18).

Theorem 1. (Nusse and Yorke, 1995)

For integer m≥ 2, let

Pm =

{
(ν1, ν2) ∈ D : −ν1−m

1 < ν2 <
1− νm−1

1

νm−1
1 − νm−2

1

}
.

If (ν1, ν2) ∈ Pm, Fν1,ν2 has a period-m attractor. Moreover, the set

{x : ω-limit set of x is not the period-m attractor}

Has Lebesgue measure zero.

Proof. See Nusse and Yorke (1995). �
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Let γm be the intersection ofν2 = −ν1−m
1 andν2 =

1−νm−1
1

νm−1
1 −νm−2

1
. Note that, for any integer

m≥ 2, γm+1 < γm. Moreover, ifν1 ≤ γN for someN,

−ν1−(m+1)
1 <

1− ν(m+1)−1
1

ν(m+1)−1
1 − ν(m+1)−2

1

< −ν1−m
1 <

1− νm−1
1

νm−1
1 − νm−2

1

for any m < N. Therefore, the family of setsPm is pairwise disjoint. Fig.2 depicts the

P2,P3,P4, andP5 on the (ν1, ν2)-plane.

<<insert Fig.2 around here>>

Next, it is reasonable that we examine the case wherein (ν1, ν2) ∈ D\∪m≥2 Pm B Σ.
That is, if (ν1, ν2) ∈ Σ, mapFν1,ν2 has a chaotic attractor in the sense that there exist no

periodic attractors, and, for anyx, the trajectory ofx has a positive Lyapunov exponent.

Hereafter, we call setΣ thechaotic region. Moreover, if
(
v0

1, v
0
2

)
∈ Σ, we call such a pair

thechaotic pair.

We discuss the chaotic region for more details. Let
(
v0

1, v
0
2

)
be any given chaotic pair.

DefineL
(
ν0

1

)
for the intersection of the vertical line and chaotic region, that is,

L
(
ν0

1

)
=

{
(ν1, ν2) ∈ Σ : ν1 = ν

0
1

}
.

Let m be the integer for which the “top” of the component ofL
(
ν0

1

)
that contains

(
v0

1, v
0
2

)
is the boundary of setPm. Moreover, letCm

(
ν0

1

)
be this component ofL

(
ν0

1

)
. It is clear

that there are two cases whereinCm

(
ν0

1

)
is bounded or unbounded. Fig.3 depicts some

examples of setCm on the (ν1, ν2)-plane.

<<insert Fig.3 around here>>

As we will see later, in our model, we only have to consider the case whereinm = 2

andCm

(
ν0

1

)
is unbound. Therefore, we simply defineCm

(
ν0

1

)
asC

(
ν0

1

)
. Considering this,

we state the existence of the chaotic orbit in map (18) as follows.

Theorem 2. (Nusse and Yorke, 1995, with some modifications1)

Let (ν1, ν2) ∈ C be a chaotic pair and assume that(ν1, ν2) ∈ C(ν1). There exist(ν1, ν̄2) ∈
C(ν1) and(ν1, ν̂2) ∈ C(ν1), for whichν̄ < ν̂ < −v−1

1 such that the following hold.

1. If ν̂ < ν2 < −v−1
1 , map Fν1,ν2 has a2k+1-piece chaotic attractor for some k≥ 1 (depend-

ing onν1 andν2). In addition, ifν2
1 <

1
2

(√
5− 1

)
, then k= 1.

1Here, we only consider the case whereinm= 2 andCm

(
ν0

1

)
is unbounded.
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2. If ν̄ < ν2 < ν̂, then Fν1,ν2 has a two-piece chaotic attractor.

3. If ν2 < ν̄, then Fν1,ν2 has an one-piece chaotic attractor.

Proof. See Nusse and Yorke (1995). �

We have seen the periodic and chaotic dynamics generated from border collision bi-

furcation on the piecewise linear map (18). The following theorem translates the above re-

sults to general border collision bifurcation results for piecewise, smooth, one-dimensional

nonlinear maps.

Theorem 3. (Nusse and Yorke, 1995)

Let G : R × J → R be a piecewise smooth map. Assume that G has the isolated crossing

fixed-point property at(x0, µ0). Let m ≥ 2 and k ≥ 2 be any integers. Defineν1 =

limx↑x0
∂G
∂x (x, µ0) andν2 = limx↓x0

∂G
∂x (x, µ0). Then,

(i) if (ν1, ν2) ∈ Pm, G exhibits border-collision bifurcation from a fixed-point attractor to

a period-m attractor at(x, µ) = (x0, µ0).

(ii) if (ν1, ν2) ∈ Σk, whereΣk = Int
{
(ν1, ν2) ∈ Σ : Fν1,ν2has a k-piece chaotic attractor

}
,

G exhibits a border-collision bifurcation from a fixed point attractor to a k-piece

chaotic attractor at(x, µ) = (x0, µ0).

Proof. See Nusse and Yorke (1995). �

The property called theisolated crossing fixed-point propertymay be a somewhat unfa-

miliar notion; however, it is not an unusual property. Indeed, our model has this property

and can be adopted to Theorem 3.

Proposition 4. Map (17) has the isolated crossing fixed-point property at(y, β) =
(
−1

a, β
∗(a,a)

)
.

Proof. See Appendix. �

4.2 Border collision bifurcation on the OLG model.

In this section, we detect the periodic and chaotic dynamics generated from the border

collision bifurcation in our model.

We now consider the following unimodal map:

yt+1 = h(yt) =

{
h1(yt) = ayt + logβ(1− a) yt ≤ −1

a,
h2(yt) = log(1+ 1

yt
) + logβ − 1 −1

a < yt ≤ −1
b.

(20)
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As we have seen in Proposition 4, map (20) has the isolated crossing fixed-point prop-

erty at(y, β) =
(
−1

a, β
∗(a,a)

)
, and therefore we can adopt Theorem 3 into the model. Now,

we have the following:

ν1 = lim
y↑− 1

a

∂h
∂y

(x, β∗(a, a)) = a and (21)

ν2 = lim
y↓− 1

a

∂h
∂y

(x, β∗(a, a)) = − a2

1− a
. (22)

It should be noted that, in our model, we cannot takeν1 and ν2 independently. Fig.4

depicts line

ν2 = −
ν2

1

1− ν1
, (23)

on the (ν1, ν2)-plane. We have only to examine the parameter set of (ν1, ν2) on this line.

In the figure, the left white circle represents intersections of two lines,ν2 = −1 and (23).

On the other hand, the right white circle represents intersections of two lines,ν2 = − 1
ν1

and (23). Theν1 coordinate of the left and the right white circles are given byν∗ andν∗∗,

respectively. Subsequently, we easily see thatν∗ = −1+
√

5
2 ≈ 0.618, andν∗∗ ≈ 0.682 which

is a root of the equationν3
1 + ν1 − 1 = 0 in [0,1].

<<insert Fig.4 around here>>

First, we can immediately state the periodic cycle in our model.

Proposition 5. If a ∈ (ν∗, ν∗∗), our model exhibits border collision bifurcation from an

attracting fixed point to a period-two attractor at(y, β) = (−1/a, β∗(a,a)).

We now examine the chaotic dynamics in the model, which is the main focus of this

section. It is easy to see that that our model exhibits the chaotic attractor fora > ν∗∗.

Moreover, we see that we have to only consider setsC2(a) for a > ν∗∗, which are un-

bounded. According to Theorems 2 and 3, we expect that the model exhibits a 2k+1-piece

chaotic attractor for somek ≥ 1 (depending onν1 andν2), a two-piece chaotic attractor,

or a one-piece chaotic attractor.

Fortunately, Sushko et al. (2015) comprehensively analyze the border collision bifur-

cation in piecewise linear map (18). Their results are too technical to refer to all of them

here; however, we need to refer to a few results to investigate the chaotic dynamics in our

model. Now, we define the following sets:

Q1 =
{
(ν1, ν2) ∈ Σ : ν1ν

2
2 − ν1 + ν2 < 0

}
,
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Q2 =
{
(ν1, ν2) ∈ Σ : ν1ν

2
2 − ν1 + ν2 > 0, ν2

1ν
3
2 + ν1 − ν2 < 0

}
, and

Q4 =
{
(ν1, ν2) ∈ Σ : ν2

1ν
3
2 + ν1 − ν2 > 0, ν6

1ν
6
2 − ν1 + ν2 < 0

}
.

Subsequently, we have the following.

Theorem 4. For k = 1,2, and 4, if (ν1, ν2) ∈ Qk, map (18) has the k-piece chaotic

attractor.

Proof. See Sushko et al. (2015). �

Fig.5 depicts the setsQ1,Q2, andQ4 on the (ν1, ν2)-plane. Black circles represent the

intersections of lineν2 = −
ν2

1
1−ν1

and the boundaries ofQk (k = 1,2, 4). Theν1 coordinate

of these intersections, represented byσ∗ andσ∗∗, are as follows:

• σ∗ ≈ 0.705 is a root of the equationν8
1 − ν3

1 + 2ν2
1 − ν1 = 0 in [0,1].

• σ∗∗ ≈ 0.724 is a root of the equationν5
1 + ν

2
1 − ν1 = 0 in [0,1].

<<insert Fig.5 around here>>

Now, we can completely characterize the chaotic dynamics generated from border col-

lision bifurcation in our OLG model.

Proposition 6. For map (20), we have the following three scenarios of bifurcation from

the attracting fixed point to a chaotic attractor.

1. For a ∈ (ν∗∗, σ∗), our model exhibits border collision bifurcation from the attracting

fixed point to a four-piece chaotic attractor at(y, β) = (−1/a, β∗(a,a)).

2. For a ∈ (σ∗, σ∗∗), our model exhibits border collision bifurcation from the attracting

fixed point to a two-piece chaotic attractor at(y, β) = (−1/a, β∗(a,a)).

3. For a ∈ (σ∗∗,1), our model exhibits border collision bifurcation from the attracting

fixed point to an one-piece chaotic attractor at(y, β) = (−1/a, β∗(a, a)).

On a k-piece chaotic attractor, the trajectory goes through each interval everyk-th

period. Of course, when a trajectory returns to the same interval, it never takes the same

value. Interestingly, when observing such a trajectory, one may regard the trajectory as a

k-cycle with random noises. Fig.6 (a) depicts the bifurcation diagram of map (20) respect

to β, where the model has the capability to exhibit four-piece chaotic attractor. Fig.6 (b)

depicts time series obtained from map (20) with four-piece chaotic attractor.
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<<insert Fig.6 around here>>

In this section, we observed the chaotic dynamics whereβ ∈ (β∗(a,a), β∗(a,a) + ϵ) and,

eventually,β ∈ (β∗(b,b) − ϵ, β∗(b,b)). In other words, we have investigated thebeginning

andendof the chaotic dynamics in the OLG model with technology choice. In the next

section, we examine the case wherein theβ is not sufficiently nearβ∗(a, a) or β∗(b, b).

5 Chaotic dynamics : Markov property

In this section, we show that our model has theMarkov propertyfor some sets of param-

eters, wherein the model can reduce to a bimodal map on the unit interval. If the map has

such a property, we can easily reproduce chaotic dynamics. In what follows, we assume

a− b
ab

> log
1− b
1− a

and β∗(b,a) < β < β∗(a,b),

where the model can be reduce to a bimodal map on the unit interval.

To simplify the analysis of the dynamics, we first use a variable change to reduce our

model to the bimodal map in the unit interval.

By defining a new variablext as

xt =
yt + 1− logβ(1− b)

log(1− a) − log(1− b)
,

Eq.(16) can be transformed into the following piecewise smooth map:

xt+1 = f (xt) =


fL(xt) = 1+ a(xt − θL), xt ≤ θL,
ϕ(xt), θL < xt ≤ θR,
fR(xt) = b(xt − θR), θR < xt,

(24)

where

ϕ(xt) = log

[
g(xt)

(1− b)(g(xt) − 1)

]1
λ
, with

λ = log
(1− a)
(1− b)

,

g(xt) = λxt + logβ(1− b),

and

θL = −
(1− a) + a logβ(1− b)

λa
,

θR = −
(1− b) + b logβ(1− b)

λb
.
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Now, we briefly discuss some property of map (24). It is easily shown that

dϕ(x)
dx

(θL) = − a2

1− a
and

dϕ(x)
dx

(θR) = − b2

1− b
.

Moreover, we have the following.

Proposition 7. Mapϕ(x) is a monotonically decreasing and concave function on(θL, θR).

Proof. See Appendix. �

Therefore, the derivatives ofϕ have lower bound− b2

1−b and upper bound− a2

1−a for x ∈
[θL, θR].

5.1 Mathematical definition of the Markov property

First, we give some mathematical definitions of the Markov property. See, for example,

Boyarsky and Ǵora (1997) for more details. LetI = [0,1] andψ : I → I be a map onI

onto itself. LetP be a finite partition ofI and Ik (k = 1,2, . . . ,n) be subintervals of the

partition. Moreover, letψk be the restriction ofψ to Ik. Now, we can define the following.

Definition 1. If eachψk is a homeomorphism from Ik onto some connected union of subin-

tervals Im, thenψ is said to be Markov. PartitionP is said to be a Markov partition with

respect toψ.

To examine complex dynamics in the piecewise smooth map, we also need to discuss

the following property. Here, letψ be a piecewise smooth map, which is not necessarily

Markov, and letψn be ann-th iterate of mapψ. Then, we define the following.

Definition 2. If there is an integer n≥ 1 such thatinf
∣∣∣dψn(x)

dx

∣∣∣ > 1 on each Ik whenever the

derivative exists, thenψ is said to be eventually expanding.

It is readily seen that the eventual expansion implies that the map has no attracting

periodic cycles and exhibits chaotic dynamics with long-run observability.

5.2 Markov partition on the OLG model

We first show that our model (24) can exhibit the following periodic cycle for some set of

parameter values:

0 = f 5(0) < f 2(0) = θL < f 4(0) = θR < f (0) = c < f 3(0) = 1. (25)

Fig.7 depicts the graph of return map ofxt with the periodic cycle (25). We can show that

such a specific cycle implies chaotic dynamics.
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<<insert Fig.7 around here>>

Proposition 8. (Observable chaos on a period-5 Markov partition)

There exist aL and aR with < 0aL < aR < 1. If a ∈ (aL,aR), there exists b∈ (a,1) and

β > 0 such that for(a,b, β), we have a period-5 Markov partition of the unit interval with

respect to f . Moreover, f is eventually expanding and thus exhibits observable chaos.

Proof. To calculate the period-5 cycle given by (25),θL andθR must solve the following

equations,

fR(1) = θR and fR( fL(0)) = θL.

A straightforward calculation shows that

β =
1

1− b
exp−

[
bλ

1+ b
+

1− b
b

]
and (26)

λ =
(b− a)(ab+ 1)(1+ b)

a2b3
. (27)

First, we check that

β∗(b,a) <
1

1− b
exp−

[
bλ

1+ b
+

1− b
b

]
< β∗(a,b). (28)

We see that the inequality

β∗(b,a) <
1

1− b
exp−

[
bλ

1+ b
+

1− b
b

]
holds if and only if 0< λ

1+b. Thus, clearly, this inequality holds. Moreover, we see that

the inequality
1

1− b
exp−

[
bλ

1+ b
+

1− b
b

]
< β∗(a,b)

holds if and only if log1−b
1−a <

a−b
ab

1+b
b . Let

η1(b) = log
1− b
1− a

and η2(b) =
a− b
ab

1+ b
b

.

It is easily seen thatη1(b) is a monotonically decreasing and concave function in [0,1].

Moreover, we have

dη2(a)
db

= −1+ a
a3

< 0 and (29)

d2η2(a)
db2

=
2(a+ 2)

a4
> 0. (30)
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Therefore, there existsϵ > 0 such that for anya ∈ (0,1),η2(b) is a monotonically decreas-

ing and convex function forb ∈ (a− ϵ, a+ ϵ). Note thatη1(a) = η2(a) and

dη1(a)
db

= − 1
1− a

and
dη2(a)

db
= −1+ a

a3
.

Considering the concavity ofη1 and convexity ofη2 for neighborhooda, if

− 1
1− a

< −1+ a
a3
⇒ a3 + a2 − 1 > 0,

there existsa < ā such that log1−b
1−a <

a−b
ab

1+b
b for b ∈ (a, ā). Let aL ≈ 0.755 be a root of

the equationa3 + a2 − 1 = 0 in (0,1). We conclude that ifa ∈ (aL, ā), then inequality (28)

holds.

Next, we examine Eq.(27). Let

φ1(b) = log
1− a
1− b

and φ2(b) =
(b− a)(ab+ 1)(1+ b)

a2b3
.

Clearly, φ1(a) = φ2(a), and we can easily see thatφ1(b) is a monotonically increasing

convex function and limb=1 φ1(b) = ∞. Moreover, we have

φ2(1) =
2(1− a2)

a2
is bounded fora ∈ (0, 1) and

dφ2(a)
db

=
a3 + a2 + a+ 1

a5
> 0.

Therefore, if

dφ1(a)
db

=
1

1− a
<

a3 + a2 + a+ 1
a5

⇒ a5 + a4 − 1 < 0,

φ1(b) intersects withφ2(b) at least one pointb ∈ (a,1). Let â ≈ 0.857 be a root of the

equationa5 + a4 − 1 = 0 in (0,1). We conclude that ifa < â, there existsb ∈ (a,1) such

that, fora andb, Eq.(27) holds.

Let aR = min {ā, â}. Now, we can state that ifa ∈ (aL,aR), there existsb ∈ (a,1) and

β > 0 such that for (a,b, β), we have a period-5 Markov partition of the unit interval with

respect tof .

Finally, we show thatf is eventually expanding. LetI1 = [0, θL], I2 = [θL, θR], I3 =

[θR, c], I4 = [c,0], andĪk be an interior ofIk. Note that every pointx ∈ ∪k
k=1 Īk will visit I2

at least once every fourth iteration. Therefore, forx ∈ ∪k
k=1 Īk,∣∣∣( f 4)′(x)

∣∣∣ ≥ a3 |ϕ′| ≥
∣∣∣∣∣∣− a5

1− a

∣∣∣∣∣∣ ,
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and if ∣∣∣∣∣∣− a5

1− a

∣∣∣∣∣∣ > 1⇒ a5 + a− 1 > 0, (31)

map f is eventually expanding. Since we can easily check whetheraL < a, inequality

(31) holds, which completes the proof. �

Proposition 8 can be immediately extended to a more general case of a period-(2n+ 3)

Markov partition forn ≥ 1.

Proposition 9. (Observable chaos on a period-(2n+ 3) Markov partition)

For any n ∈ N, there exist a2n+3,L and a2n+3,R with 0 < a2n+3,L < a2n+3,R < 1. If a ∈
(a2n+3,L,a2n+3,R), there exists b∈ (a,1) andβ > 0 such that for(a,b, β), we have a period-

(2n+ 3) Markov partition of the unit interval with respect to f . Moreover, f is eventually

expanding and, hence, chaotic.

Proof. See Appendix. �

6 Concluding remarks

Based on the model studied by Umezuki and Yokoo (2019), we develop a piecewise

smooth OLG model. By assuming a continuous choice instead of discrete choice of the

technologies, the model has the capability to exhibit several dynamic growth patterns,

including chaotic dynamics, which cannot be observed virtually for the model in Umezuki

and Yokoo (2019). Moreover, in spite of its generality, the model is tractable enough to

analytically investigate such complex dynamics in depth.

First, by using the border collision bifurcation theory, we investigated the routes from

a globally attracting steady state to other non-stationary behaviors. Then, we completely

characterized the chaotic dynamics around the bifurcation point; that is, we detected four-

piece, two-piece, and one-piece chaotic attractors. Second, we calculated the parameter

values for which the model has the Markov property. Then, we characterized the chaotic

dynamics, which are different from those in the case of border collision bifurcation. How-

ever, one might argue that sets of the parameter value, for which the map is Markov, are

too restricted. For future research, it is a natural task to check therobustnessof the chaotic

dynamics by characterizing the dynamics near the parameter values for which the map is

Markov.

Finally, it should be pointed out that, compared with the output elasticity for capital

(or labor) estimated in the real world, parameter valuesa andb, for which the model can

exhibit chaotic dynamics, are relatively high. Although the intuition behind this remains



19

unclear, from the technical view point, it could be explained by considering an inverse

problem as follows. In this study, we assume that the total factor productivity of the

technology, represented byA, is constant for all technologies. However, in general, we

can consider different total factor productivity for each technology. In that case, the model

has more flexibility, and various new problems might appear, including the following. “A

set of which type of technologies is needed to reduce the model to a continuous piecewise

linear map?” “For a given piecewise smooth map, is there a set of technologies such that

the model can be reduced to the given piecewise smooth map?” “If so, what features does

the set of technologies have?” In the future, we hope that our model is investigated more

deeply with additional settings without losing its tractability and generality.

Appendix A Proof of Proposition 4

Proof. For a general statement of the isolated crossing fixed-point property, see Nusse and

Yorke (1995). Map (20) has the isolated crossing fixed-point property at
(
−1

a, β
∗(a,a)

)
if

the following conditions hold.

1. There exists
{(
−1

a, β
)

: β ∈ J0, J0 is an open interval containingβ∗(a,a)
}
, and for any

β ∈ J0, map (20) is not differentiable at the point
(
−1

a, β
)
.

2. The set{(x(β), β) : h(x(β)) = x(β), β ∈ J0} is a continuous curve and intersects curve{(
−1

a, β
)

: β ∈ J0

}
transversally at

(
−1

a, β
)
.

3. For β ∈ J0,
dh(y)

dy > 0 for y < −1
a and dh(y)

dy < 0 for y > −1
a. Moreover, the left limit

limy↑− 1
a

dh(y)
dy and right limit limy↓− 1

a

dh(y)
dy exist.

4. h
(
−1

a

)
is a smooth function ofβ ∈ J0, and forβ = β∗(a, a),

dh(− 1
a)

dβ > 0.

It is obvious that map (20) satisfies these conditions. �

Appendix B Proof of Proposition 7

Proof. We easily show that

dϕ(x)
dx

= − 1
g(x)[g(x) − 1]

.

Sinceλ > 0 andg(θR) = − b
1−b < 0, g(x) < 0 for [θL, θR]. Therefore, we have

dϕ(x)
dx

< 0.



20

Moreover, we have
d2ϕ(x)

dx2
=

λ
[
2g(x) − 1

]
g(x)2[g(x) − 1]2

< 0,

for x ∈ [θL, θR]. This completes the proof. �

Appendix C Proof of Proposition 9

Proof. First, we show that there exists the following 2n+ 3 cycle:

0 = f 2n+3(0) < f n+1(0) = θL < f 2n+2(0) = θR < · · · < f n+3(0) < f (0) < 1 = f n+2(0).

(C.1)

To calculate the cycle given by (C.1),θL andθR must solve the following equations:

f n
R(1) = θR and f n

R( fL(0)) = θL.

A straightforward but tedious calculation shows that

β =
1

1− b
exp−

[
bnλ

Σn
k=0b

k
+

1− b
b

]
and (C.2)

λ =
(b− a)(1+ abn)Σn

k=0b
k

a2b2n+1
. (C.3)

First, we check that

β∗(b,a) <
1

1− b
exp−

[
bnλ

Σn
k=0b

k
+

1− b
b

]
< β∗(a,b). (C.4)

We see that the inequality

β∗(b, a) <
1

1− b
exp−

[
bnλ

Σn
k=0b

k
+

1− b
b

]
holds if and only if

0 < λ

(
bn

Σn
k=0b

k

)
.

Clearly, this inequality holds. Moreover, we also see that the inequality

1
1− b

exp−
[

bnλ

Σn
k=0b

k
+

1− b
b

]
< β∗(a,b)

holds if and only if log1−b
1−a <

a−b
ab

Σn
k=0bk

bn . Let

η1(b) = log
1− b
1− a

and η̂2(b) =
a− b
ab

Σn
k=0b

k

bn
.
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It is easily seen thatη1(b) is a monotonically decreasing and concave function in [0,1].

Moreover, we have

dη̂2(a)
db

= −
Σn

k=0a
k

an+2
< 0 and (C.5)

d2η̂2(a)
db2

=
(1+ n)(1+ an+1) + 2Σn

k=1(n− k+ 1)ak

an+3
> 0. (C.6)

Therefore, there existsϵ > 0 such that for anya ∈ (0,1),η2(b) is a monotonically decreas-

ing and convex function forb ∈ (a− ϵ, a+ ϵ). Note thatη1(a) = η̂2(a), and

dη1(a)
db

= − 1
1− a

and
dη̂2(a)

db
= −
Σn

k=0a
k

an+2
.

Considering the concavity ofη1 and convexity of ˆη2 for neighborhooda, if

− 1
1− a

< −
Σn

k=0a
k

an+2
⇒ an+2 + an+1 − 1 > 0,

there existsa < ā2n+3 such that log1−b
1−a < a−b

ab

Σn
k=0bk

bn for b ∈ (a, ā2n+3). Let a2n+3,L be a

root of the equationan+2 + an+1 − 1 = 0 in (0,1). We conclude that ifa ∈ (a2n+3,L, ā2n+3),

inequality (C.4) holds.

Next, we examine Eq.(C.3). Let

φ1(b) = log
1− a
1− b

and φ̂2(b) =
(b− a)(1+ abn)Σn

k=0b
k

a2b2n+1
.

Clearly,φ1(a) = φ2(a). We can easily see thatφ1(b) is a monotonically increasing convex

function and limb=1 φ1(b) = ∞. Moreover, we have

φ2(1) =
(n+ 1)(1− a2)

a2
is bounded fora ∈ (0,1) and

dφ2(a)
db

=
Σ2n+1

k=0 ak

a2n+3
> 0.

Therefore, if
dφ1(a)

db
=

1
1− a

<
Σ2n+1

k=0 ak

a2n+3
⇒ a2n+3 + a2n+2 − 1 < 0,

φ1(b) intersects ˆφ2(b) at least one pointb ∈ (a,1). Let â2n+3 be a root of the equation

a2n+3 + a2n+2 − 1 = 0 in (0,1). We conclude that ifa < â2n+3, there existsb ∈ (a,1) such

that, fora andb, Eq.(27) holds. Leta2n+3,R = min {ā2n+3, â2n+3}. Now, we can state that

if a ∈ (a2n+3,L, a2n+3,R), there existsb ∈ (a,1) andβ > 0 such that for (a,b, β), we have a

period-2n+ 3 Markov partition of the unit interval with respect tof .
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Finally, we show thatf is eventually expanding. LetIk (k = 1,2, . . . n−1) be subinter-

vals of the period-2n+3 Markov partition andI ∗ = [θL, θR]. Moreover, letĪk be an interior

of Ik. A minor consideration shows that every pointx ∈ ∪k
k=1 Īk will visit I ∗ at least once

every 2n+ 2th iteration. Therefore, forx ∈ ∪k
k=1 Īk,∣∣∣( f 2n+2)′(x)

∣∣∣ ≥ a2n+1 |ϕ′| ≥
∣∣∣∣∣∣−a2n+3

1− a

∣∣∣∣∣∣ ,
and if ∣∣∣∣∣∣−a2n+3

1− a

∣∣∣∣∣∣ > 1⇒ a2n+3 + a− 1 > 0, (C.7)

map f is eventually expanding. We can easily see that ifa2n+3,L < a, inequality (C.7)

holds. This completes the proof. �
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Figure 1: Piecewise smooth map (17) which has the fixed point in
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)
. a = 0.7,b =

0.85 andβ = 4.
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Figure 2: The setsP2,P3,P4 andP5 on the (ν1, ν2)-plane. If (ν1, ν2) ∈ Pk, the map (18)
has an attracting period-k cycle.
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Figure 3: Some examples of the setCm on the (ν1, ν2)-plane. The setsC2(νL),C3(νL) and
C4(νL) are bounded, while the setC2(νR) is unbounded. Note thatL(νR) = C2(νR) and
L(νL) = C2(νL) ∪C3(νL) ∪C4(νL) ∪ . . . .



27

-20

-15

-10

-5

 0

 0  0.5  1

ν 2

ν1

P2

P3

P4
P5

ν∗ ν∗∗

Figure 4: The lineν2 = −
ν2

1
1−ν1

on the (ν1ν2)-plane. Fora > ν∗∗, our model has the
capability to generate chaotic dynamics induced by border collision bifurcation.
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Figure 5: Classification of the chaotic region. Depending the valuea, our model exhibit
four-piece, two-piece and one-piece chaotic attractor which relate to the regionQ4,Q2

andQ1, respectively.
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(b) Time series obtained from map (20) with four-piece chaotic attractor.

Figure 6: Panel (a) depicts the bifurcation diagram of map (20) respect toβ, wherea =
0.684 ∈ (ν∗∗, σ∗). Panel (b) depicts time series obtained from map (20) witha = 0.684
andβ = 2.06.
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Figure 7: The map (24) with a period-5 Markov parition.a = 0.8,b ≈ 0.902 andβ ≈
6.507.


