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Abstract

This paper develops a deterministic inflation model via a piecewise lin-
ear expectations-augmented Phillips curve. Simulations show that the area-
preserving property of the model entails complex dynamics including non-
attracting but observable periodic or chaotic behaviors. Such behaviors are
relatively uncommon in the economic literature.
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1 Introduction

Inflation has always been a crucial topic in macroeconomics, as well as its rela-

tionship with the unemployment rate. In this paper, we build a simple inflation-

unemployment model exhibiting complex behaviors that are not commonly observed

in the economic literature. The model is composed of simple macroeconomic rela-

tions such as the expectations-augmented Phillips curve, static expectations, and

a dynamic version of the Okun’s law, all components of which can be found in

undergraduate macroeconomic textbooks such as Blanchard (1997).

In addition to these standard relationships, we assume that the Phillips curve is

piecewise linear. This allows us to introduce slight nonlinearity into the model with

all other relationships being linear.

A similar inflation model1 was analyzed by Soliman (1996a, 1996b), who assumes

a smooth Phillips curve instead of a piecewise linear one. Nonetheless, adopting

piecewise linearity has a distinct advantage over other types of nonlinearities. For

example, Umezuki (2019) shows that, in the same framework as presented here,

the piecewise linearity of the Phillips curve allows the direct calculations of certain

exact analytical results, which could not be obtained under the smooth nonlinearity

assumption. For instance, it can be shown that the model exhibits a transverse

homoclinic point, which implies the existence of a horseshoe, (i.e., a chaotic invariant

set). However, the same could hardly be shown for the Soliman’s model without

relying on numerical methods.

In this paper, we leave aside the detailed analysis and only demonstrate some

numerical results for complex but less common dynamics of the model.

The remainder of this paper is organized as follows. Section 2 describes the

model. Section 3 shows the results of some numerical simulations for several specific

sets of parameter values. Section 4 deals with the polygonal dynamics with integer

parameters. Section 5 provides some concluding remarks.

2 The Model

First, we formalize four standard macroeconomic relationships as in Blanchard

(1997).

πt = f(ut) + πe
t , (1)

1Yoshida (2015) employs a similar inflation model with a nonlinear Okun’s law and a linear
Phillips curve, and numerically shows that the model exhibits chaotic dynamics.
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ut+1 = −β(gt − gn) + ut, β > 0; (2)

gt = m− πt, (3)

πe
t+1 = πt. (4)

Eq.(1) describes the expectations-augmented Phillips curve: the gap between the

actual inflation rate πt and the expected inflation rate πe
t is related to the unemploy-

ment rate ut through the function f . The subscript t denotes time that discretely

extends from 0 to infinity. Eq.(2) represents the dynamic version of the Okun’s law.

According to this formula, if the output growth rate gt is above the natural growth

rate gn, then the time variance of unemployment decreases. Eq.(3) presents the equi-

librium condition in the money market. We assume here that the nominal growth

rate of money, m, is constant over time. We also assume that the expectations are

static as per Eq.(4).

We call the graph of the function f the basic Phillips curve, because if, instead of

Eq.(1), we would relate πt to ut directly as πt = f(ut), we would obtain the Phillips

curve prior to augmentation with expectations. We assume that the basic Phillips

curve has a piecewise linear form represented by

f(ut) =

{
−a1ut + b1 if ut ≤ θ

−a2ut + b2 if ut > θ,
(5)

where either a1 > a2 > 0 and b1 > b2 > 0 when f is convex, or a2 > a1 > 0 and

b2 > b1 > 0 when f is concave.2 In either case, f has a kink at

ut = θ =
b1 − b2
a1 − a2

.

Eqs.(1)–(5) can be reduced to the following second-order difference equation in

terms of unemployment:

ut+2 = (2− βai)ut+1 − ut + bi, (6)

where i = 1 if ut+1 ≤ θ and i = 2 if ut+1 > θ.

Let us introduce new variables as follows:

ut = Cyt + θ and yt+1 = xt

with

C =
β(a1b2 − a2b1)

a1 − a2
.

2There have been debates (e.g., Laxton et al., 1999) about the convexity with respect to un-
employment of the basic Phillips curve for the United States. Nonetheless, this issue is not much
relevant in our formulation.
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The change of variables transforms Eq.(6) into the map F : R2 → R2 in the following

form:

F :

(
x
y

)
7→

(
(2− βai)x− y + 1

x

)
, (7)

where i = 1 if Cx ≤ 0 and i = 2 if Cx > 0.

Note that the map (7) directly depends on the parameters a1, a2 and β. The

parameters b1 and b2 influence the dynamics through C, while m and gn have no

impact on the model dynamics. Moreover, the value of C itself does not matter,

while its sign does. By inspection, we see that the case where f is concave and

C < 0 is equivalent to the case where f is convex and C > 0. Furthermore, the case

where f is concave and C > 0 is equivalent to the case where f is convex and C < 0.

Thus, without loss of generality we can focus on the case where f is convex. The

positivity (negativity) of C corresponds to the case where the basic Phillips curve

has the kink at (πt, ut) = (π∗, θ) with π∗ > 0 ( π∗ < 0). Fig.1 (a) and (b) depict

examples of the basic Phillips curve when C > 0 and C < 0, respectively.

<<Insert Fig.1 around here>>

Finally, we note that the determinant of the Jacobian matrix of the map (7)

is unity wherever the derivative exists. In such a case, the map is referred to as

area-preserving. This implies that no invariant set for F can be an attractor or a

repeller. See Guckenheimer and Holmes (1997) for the use of terminology.

3 Simulation examples

In this section, we present several figures, each of which plots a trajectory generated

by the map (7) for a specific set of parameter values.

<<Insert Figs. 2–5 around here>>

Figs.2 and 3 illustrate the cases where |2−βai| is unity for i = 1, 2, which implies

that all coefficients in Eq.(7) are integers. In both cases, we can find a fixed point,

periodic points, and an orbit wandering on the plane in a complex manner while

avoiding the polygonal regions. We can see a triangle and four hexagons in Fig.2 and

six hexagons in Fig.3. In the next section, we explain how such polygonal regions

might arise.



4

Figs.4 and 5 depict other complex orbits for cases with non-integer coefficients.

In these cases, the polygons disappear, while elliptic structures arise. Counterin-

tuitively, every orbit depicted in the figures represents not an attractor due to the

area-preserving property of the map.

4 Polygonal dynamics

In Figs.2 and 3, all parameters are integers: (a1, a2, β) = (3, 1, 1). In these cases,

we have observed the emergence of polygonal regions on the plane. Devaney (1984)

and Aharonov et al. (1997) study the case of Fig.3. Here, we investigate the case of

Fig.2 in more detail. Here, the map (7) turns to

F :

(
x
y

)
7→

(
−|x| − y + 1

x

)
. (8)

The map (8) has a center fixed point at (x, y) =
(
1
3
, 1
3

)
∈ R2. Let J be a Jacobian

matrix of the map (8). In the neighborhood of the fixed point, J is given by

J =

(
−1 −1
1 0

)
(9)

and thus, J3 = Id. It is easy to see that the maximal neighborhood of
(
1
3
, 1
3

)
, on

which J3 = Id, is a triangle with vertices at (1, 0), (0, 1), and (0, 0). Therefore, all

points within the triangular region, except the fixed point, have period three. Thus,

the amplitude of the period-three cycle within the triangular region depends on the

initial condition.

Furthermore, the map (8) exhibits the periodic center points of period four at

(3,−1), (−1, 3), (−3,−1), and (−1,−3). By the same argument, let J4 be a Jacobian

matrix of the fourth iteration of the map (8). In the neighborhood of the periodic

point (3,−1), for instance, J4 is given by

J4 =

(
1 1
−1 0

)
(10)

and thus, J6
4 = Id. Therefore, all points in the neighborhood of each periodic point

have period 24. Again, the amplitude of this cycle depends on the initial conditions.

It is not hard to conclude that such polygonal structures will easily be destroyed

when the parameters are perturbed from the given integers. Fig.6 provides an

example. In this case, there are infinitely many elliptic orbits instead of the period

three and 24 cycles mentioned above.
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<<Insert Fig.6 around here>>

For the dynamics outside the polygons, see Umezuki (2019), which shows the

presence of a chaotic invariant set.

<<Insert Fig.7 around here>>

5 Concluding remarks

Fig.7 depicts how the actual inflation rate and the unemployment rate are related

to the basic Phillips curve. We can observe that the complex trajectory is scattered

around the basic Phillips curve. Note that the kink of the basic Phillips curve is the

only element of nonlinearity responsible for the complex dynamics in our model.

Finally, the area-preserving property of our economic system is not robust. In

fact, we can show that a slight change in the expectations formation can make our

model dissipative. As a result, some less common, less intuitive dynamic properties

such as polygonal and elliptic structures, and some sort of sensitivity to initial

conditions would easily disappear.
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(a) The basic Phillips curve represented by Eq.(5). a1 = 3, a2 = 1, b1 = 10
and b2 = 4.
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(b) The basic Phillips curve represented by Eq.(5). a1 = 3, a2 = 1, b1 = 6
and b2 = 1.

Figure 1: Fig.(a): C > 0. Fig.(b): C < 0.
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Figure 2: a1 = 3, a2 = 1, β = 1, and C < 0.
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Figure 3: a1 = 3, a2 = 1, β = 1, and C > 0.
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Figure 4: a1 = 3.5, a2 = 1.5, β = 1, and C < 0.
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Figure 5: a1 = 3.5, a2 = 1.5, β = 1, and C > 0.
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(a) a1 = 3.001, a2 = 1, β = 1 and C < 0.
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(b) Closer look at the square in (a).

Figure 6: Fig.(a) depicts a complex orbit and some elliptic orbits generated by the
map slightly perturbed from the case of Fig.2. Fig.(b) depicts an enlargement of
the neighborhood of the fixed point.
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Figure 7: A trajectory of the actual inflation rate and unemployment rate, which
corresponds to Fig.3. The basic Phillips curve given by Eq.(5) is superimposed.
a1 = 3, a2 = 1, b1 = 10, b2 = 4 and β = m = gn = 1.


